

COLLEGE NATIONAL DE BIOCHIMIE DES HÔPITAUX

Organisme de formation continue n°82 07 00551 07

31èmes Journées Nationales

Jeudi 26 et vendredi 27 janvier 2023

hôtel Ibis Paris 17 Clichy-Batignolles

Présentation HIL

REGINE CARTIER

Service de Biochimie et Biologie moléculaire - CHU de Lyon

MATTHIEU PECQUET

Service de Biologie - Hôpital Saint Joseph Saint Luc - Lyon

COLLEGE NATIONAL DE BIOCHIMIE DES HÔPITAUX

Organisme de formation continue n°82 07 00551 07

31èmes Journées Nationales

Jeudi 26 et vendredi 27 janvier 2023

hôtel Ibis Paris 17 Clichy-Batignolles

DECLARATION D'INTERET DANS LE CADRE DE MISSIONS DE FORMATION RÉALISÉES POUR LE CNBH

Dr Régine CARTIER.

Exerçant aux Hospices Civils de LYON – Groupement Hospitalier Est – Service de biochimie et biologie moléculaire.

déclare sur l'honneur

Ne pas avoir d'intérêt, direct ou indirect (financier), avec les entreprises pharmaceutiques, du diagnostic ou d'édition de logiciels susceptible de modifier mon jugement ou mes propos, concernant le sujet et les DMDIV présentés.

Citer ici les liens mentionnés sur la déclaration s'il en existe, sinon supprimer cette mention

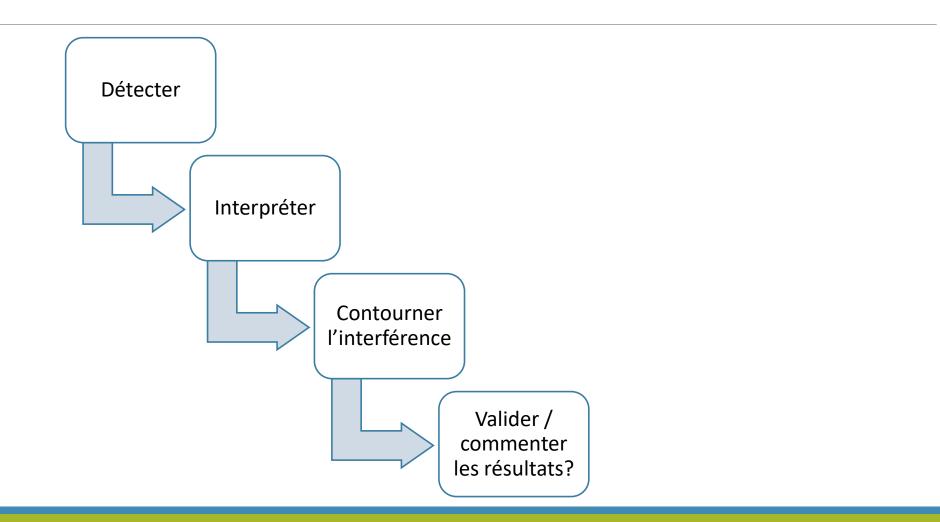
COLLEGE NATIONAL DE BIOCHIMIE DES HÔPITAUX

Organisme de formation continue n°82 07 00551 07

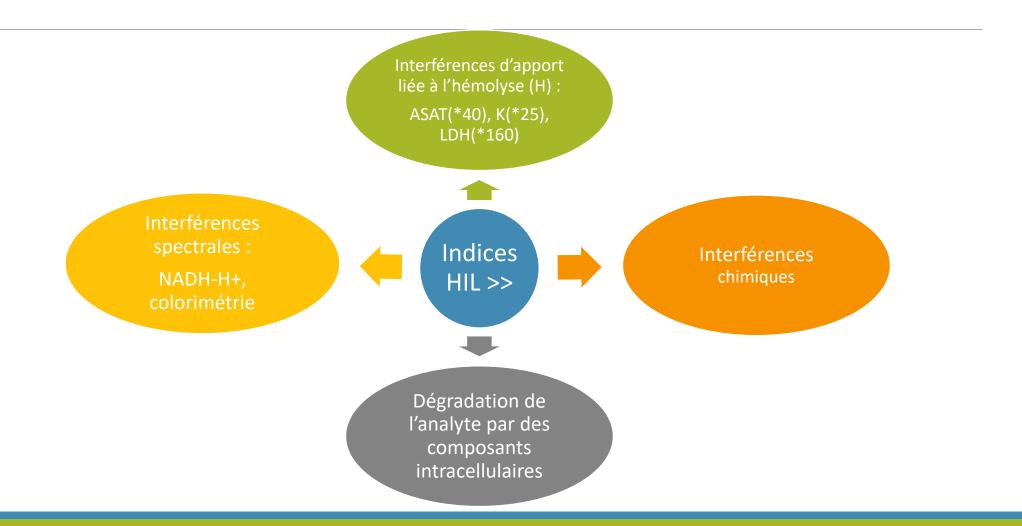
31èmes Journées Nationales

Jeudi 26 et vendredi 27 janvier 2023

hôtel Ibis Paris 17 Clichy-Batignolles


DECLARATION D'INTERET DANS LE CADRE DE MISSIONS DE FORMATION RÉALISÉES POUR LE CNBH

Dr Pecquet Matthieu Exerçant à l'Hôpital St Joseph St Luc au LBM - LYON déclare sur l'honneur


ne pas avoir d'intérêt, direct ou indirect (financier), avec les entreprises pharmaceutiques, du diagnostic ou d'édition de logiciels susceptible de modifier mon jugement ou mes propos, concernant le sujet et les DMDIV présentés.

Citer ici les liens mentionnés sur la déclaration s'il en existe, sinon supprimer cette mention

PLAN : rappel de la problématique

Intro: rappel de la problématique

Fréquence : Hémolyse / Ictère / Lipémie

%	Hémolyse 30 – 100 mg/dl	Hémolyse > 100 mg/dl	Ictérique I2-I3	Lipémie L3- L4	Н	ı	L
Tube héparine Li	14,2 %	3,7 %	1,9 %	1,6 %	17,9 %	5,6 %	8,7 %
Tube sec	9,2 %	1,6 %	0,8 %	1,2 %	10,7 %	4,9 %	5 %
Donnáss janujar 2	019 · Diochimia du C	DDE total do 4	2440 tubos				

Données janvier 2018 : Biochimie du CBPE - total de 42440 tubes

Enquête KIMMS de RCPAQAP (Australie) 2010 -2014 : Hémolyse dans le top 3 des rejets d'échantillons - de 10,4 % à 31 % pour services d'urgences

- → Prélèvement Hémolysé le plus fréquent
- → Taux hémolyse faible majoritairement → quel impact ?

Complexité des interférences:

3 interférences visibles : H – I – L

- ✓ Degré d'intensité de l'interférence
- ✓ Interférences **croisées** : *ex plasma hémolysé lactescent*
- ✓ Nombre d'analytes impactés peut être potentiellement important : en chimie, immunodosages, en hémostase
- ✓ Interférence variable selon le **principe analytique**, **selon mise en œuvre sur** l'analyseur (couple automate/réactif)
- ✓ Impact variable selon la **concentration de l'analyte** : valeurs de référence / pathologiques.
- ✓ Quels critères d'interprétation utilisés : comment répondre aux besoins cliniques : compromis entre trop grande sévérité / permissivité

Objectifs enquêtes PBQ: EEQ

- Evaluer la précision (reproductibilité) pour les résultats HIL quantitatifs (CV)
- Comparer les indices HIL entre les analyseurs de biochimie et hémostase
- Tester et comparer l'interférence de l'hémolyse sur un panel d'analytes de biochimie au travers de groupes de pairs analytiques
- →cf. travaux GP interférences CNBH 2010-2015
- Aider les laboratoires dans leurs pratiques

1ere enquête Pilote **en 2017 :** 315 laboratoires → 466 réponses Envoi de 2 sérums par laboratoire : 1 mL natif + 1mL surchargé en hémoglobine [1 g/L] Mesure des indices HIL + 18 paramètres de biochimie Questionnaire sur les pratiques

PBQ: programmes HIL depuis 2018

Analyseurs de Biochimie et hémostase

- √ 4 enquêtes/an avec 2 échantillons
- √ échantillons lyophilisés, différents profils, 3 fournisseurs testés
 - Simple : hémolysé, ictérique ou lactescent
 - mixte : hémolyse/ictère hémolyse/lactescence .. Ictère/lactescence
- ✓ Tests de stabilité, homogénéité

En 2022 : plus de 650 Laboratoires participants soit 1200 modules

Seuils interprétation

Seuils d'interprétation quantitatif						
Non hémolysé Non ictérique Non Lipémique						
H < 20 mg/dL						
Notation: Limites acceptables: 30%						

Notation résultat semi-quantitatif

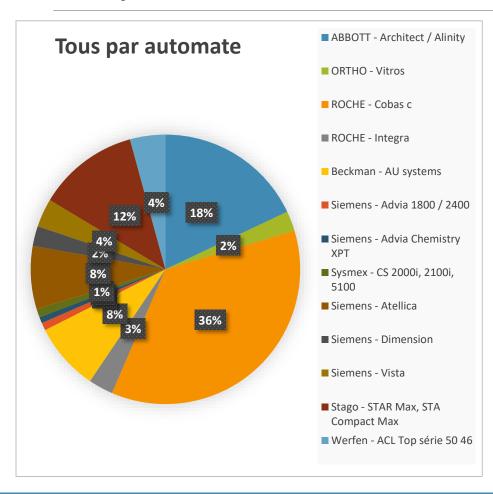
intervalle conforme défini par la moyenne du « toutes techniques » quantitatives

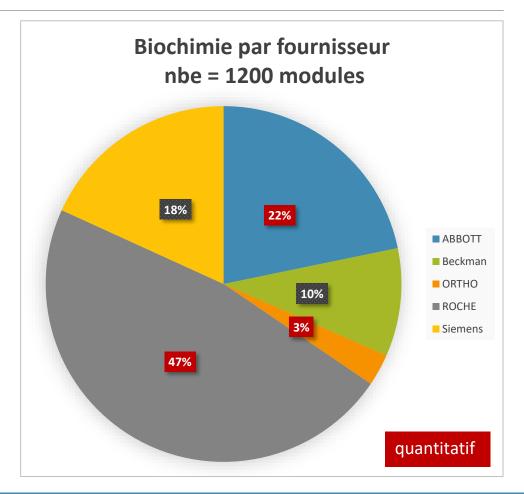
Résultat conforme: note TB

Résultat erroné : note à 4

22BI08 / Indice d'hémolyse quantitatif (mg/dL)

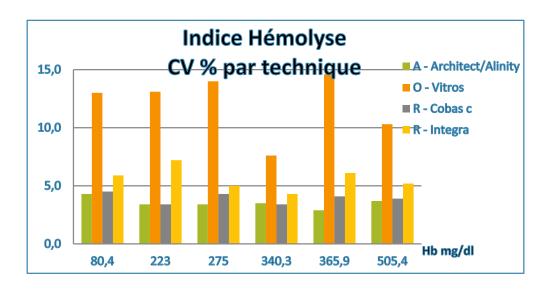
Limites acceptables à ± 30,0 % (ProBioQual taux moyen)
Statistiques robustes (algorithme A - norme ISO 13528:2015)


Groupes techniques/pairs	Codage	Histogramme	n Cible CV E/M% Limites
ENSEMBLE DES RESULTATS	MD		811 155,0 4,4

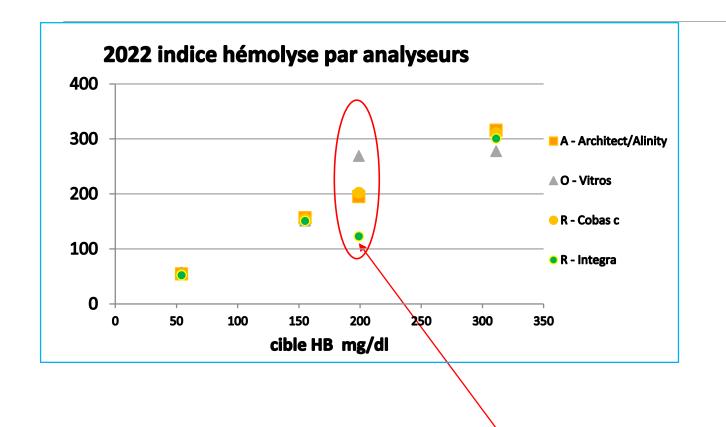

Echantillon hémolysé (H = 105,6 à 205,4 mg/dL), no

		INDICE d'HEMOLYSE		
Analyseur	Nombre de	Intitulé du	Correspondance	
Allalyseul	participants	niveau	en mg/dL	n
		IIIveau	d'hémoglobine	
		++	100 à 199	102 (93,6%)
Beckman - AU systems	109	***	200 à 299	7 (6,4%)
Beckman - DxC/Synchron	4	1-2	0 à 75	2 (50%)
Beckman - Dxc/3yncmon		5-6	150 à 225	2 (50%)
Siemens - Advia Chemistry XPT	8	+	45 à 140	1 (12,5%)
Siemens - Advia Chemistry AFT	0	++	140 à 235	7 (87,5%)
Siemens - Advia 1800 / 2400	2	++	140 à 235	2 (100%)
		1	11 à 130	7 (6,2%)
Siemens - Atellica	114	2	131 à 249	104 (92%)
		4	500 à 749	2 (1,8%)

conforme si compris entre 106 et 205 mg/dl

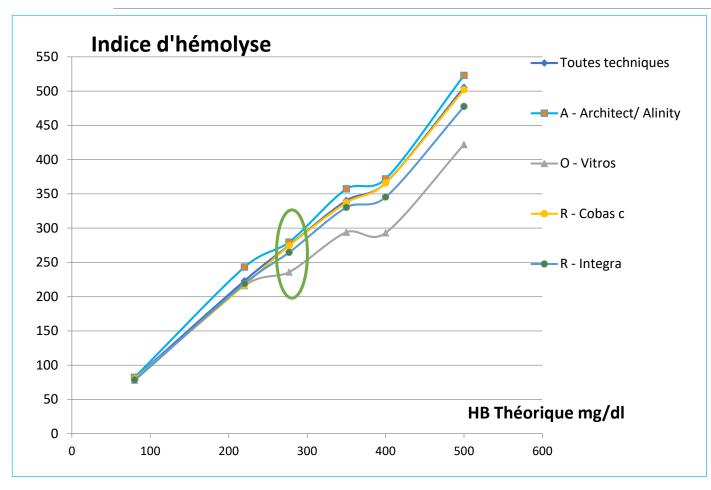

Retour sur les enquêtes PBQ Répartition des utilisateurs

Performances EEQ 2022 Techniques quantitatives


Moyenne de CV (%)	Techniques			
Étiquettes de lignes 🛂	ABBOTT - Architect / Alinity	ORTHO - Vitros	ROCHE - Cobas c	ROCHE - Integra
■ Indice de lipémie	3,4	8,7	4,3	2,9
373,3	3,4	6,4	4,6	3,1
1220,2	3,3	10,9	3,9	2,7
■Indice d'hémolyse	3,6	12,8	4,5	6,2
155	3,2	12,8	4,3	5,3
311,2	3,8	14,0	4,2	5,6
54,1	3,8	11,7	5,0	7,7
■Indice d'ictère	5,2	7,7	5,8	2,8
11,69	5,2	8,8	6,9	4,6
20,45	5,2	6,5	4,6	0,9

2017 - 2021 Sérums surchargés hémolysat

CV Satisfaisants
98% des laboratoires conformes avec LA à 30%


Indice H: comparaison valeurs quantitatives

22BI04	Moy mg/dl	CV %
TT Techn. N= 785	199	8.2
Architect	195	4.1
Vitros	270	12.2
Cobas c	202	8.4
Integra	123	8.6

22BI04 Echantillon hémolysé et lipémique

Indice H: comparaison valeurs quantitatives sérums surchargés

Corrélation avec le taux théorique en hémoglobine

Hémoglobine libre (spectrophotométrle)
CHU Nantes : 277,0 mg/dL

20BI99 N=614	Moy mg/dl
TT Techn	275
Architect/AL	279
Vitros	235
Cobas c	274
Integra	264

Techniques semi-quantitatives

			INDICE d'HEMOLYS	SE *	
Analyseur	Nombre de participants	Intitulé du niveau	Correspondance en mg/dL	n	Ir
		N	d'hémoglobine < 50	23 (20.5%)	_
Beckman - AU systems	111	+++++	> 500	11 (10%)	
		Alarme	Alarme	77 (69,5%)	•
Beckman - DxC/Synchron	2	1-2	0 à 75	1 (50%)	
beckman - bxc/synchron	-	Alarme	Alarme	1 (50%)	
Siemens - Advia Chemistry XPT	8	-	0 à 45	8 (100%)	
Siemens - Advia 1800 / 2400	2	-	0 à 45	2 (100%)	
		0	≤ 10	31 (27%)	
Siemens - Atellica	114	1	11 à 130	82 (72%)	
		2	131 à 249	1 (1%)	
Siemens - Dimension	30	1	≤ 25	29 (96,5%)	
		3	50 à 200	1 (3,5%)	
Siemens - Vista	39	1	≤ 10	39 (100%)	
		0	0 à 65	1 (10%)	
Siemens - CS 2000i, 2100i, 5100	10	1	65 à 170	1 (10%)	
Siemens - C3 2000i, 2100i, 3100	10	5	≥470	6 (60%)	
		Alarme	Alarme	2 (20%)	
		1	0 à 30	205 (98,5%)	
Stago - STAR Max, STA Compact Ma	209	3	60 à 200	2 (1%)	
		4	200 à 500	1 (0,5%)	
Werfen - ACL Top série 50	64	1	0 à 100	3 (4,5%)	
Wellen - Act Top Selle 30	8	2	100 à 200	61 (95,5%)	

ECHANTILLON 22BI02

Echantillon non hémolysé (H < 20 mg/dL), non ictérique (I < 2 mg/dL), lipémique (L = 520 à 1731 mg/dL)

Vérification visuelle nécessaire

Sérum lipémique

→ Indice d'hémolyse surestimé

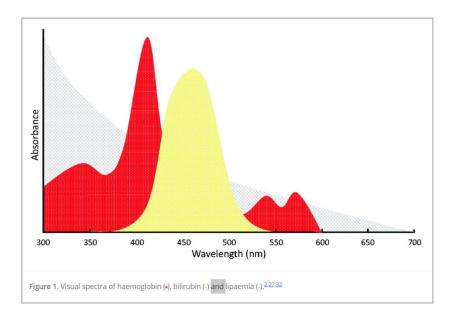
Exemple: ACL Top, AU sytem

Problème nombre de longueurs d'onde de mesure ?

Problème observé avec sérum hémolysé, rendu ictérique

Anomalies principales observées

- ✓ Ech. hémolysé, non ictérique, non lipémique : 98 à 99 % conforme pour les 3 indices
 - ✓ ACL TOP mis en défaut : détection ictère
- ✓ Ech. ictérique, non hémolysé, non lipémique : 96 à 99 % conformes pour les 3 indices


✓ Ech. lipémique, non hémolysé, non ictérique :

- Quantitatifs: 3 indices conformes
- Semi quantitatifs: détection d'ictère (ACL TOP, Au system)

✓ Ech. hémolysé lipémique, non ictérique :

- Quantitatifs: 3 indices conformes (98 à 99 %) sauf Vitros biais positif sur indice H et négatif pour les Integra
- Semi quantitatifs: détection d'ictère (ACL TOP, AU system en alarme)

Mesure des indices selon les analyseurs

Un algorithme mathématique calculera la quantité relative

•Farrell CJ, Carter AC. Serum indices: managing assay interference. Ann Clin Biochem 2016;53(5):527-538

Analyseur	Longueurs d'onde de mesure (nm)	Calculs de l'indice
ABBOTT Architect Alinity	4 paires de longueurs d'onde 500/524 572/604 628/660 524/804	H = M(a05xA1 + a06xA2 + a07xA3 + a08xA4) I = M(a09xA1 + a10xA2 + a11xA3 + a12xA4) L = M(a01xA1 + a02xA2 + a03xA3 + a04xA4)
BECKMAN C. AU system	 4 paires de longueurs d'onde H : 410/480 et 600/800 I : 480/570 et 600/800 	L: 660/800
BECKMAN C. DxC/Synchron	Mesure à 5 longueurs d'onde : 340, 410, 470, 600	et 670
ORTHO C. D. Vitros	3 paires de longueurs d'onde H : 522/750 I : 507/776 L : 700	
ROCHE Cobas c systems (c701, c501/502, c311)	3 paires de longueurs d'onde H : 570/600 (ΔAbs2), I : 480/505 (ΔAbs1), L : 660/700 (ΔAbs3)	H = 1/A x [ΔAbs2 - B x ΔAbs3] I = 1/D x[ΔAbs1- E x(ΔAbs2 - B x ΔAbs3) - F xΔAbs3] L = 1/C x ΔAbs3 *
SIEMENS Advia / Atellica	3 paires de longueurs d'onde H : 571/596 I : 478/505 L : 658/694	
SIEMENS Dimension Vista	Mesure à 700 nm Correction pour H et I H : 405/700 I : 452/700 L : 700	
Sysmex CS-2000i, CS-2100i, CS-5100	3 longueurs d'onde H : 575 I : 405 L : 660	
WERFEN ACL TOP 550/750	3 longueurs d'onde H : 405/535 I : 405 L : 535/671	Mesure de l'absorbance sur TP ou TCA durant la période de délai aux 3 longueurs d'onde 3 équations à 3 inconnues dont la résolution donne la valeur de chacune des interférences

Enquêtes supp.: surcharge en hémoglobine

2017 à 2021

- √ 6 surcharges en Hb de 80 mg/dl à 500 mg/dl
- ✓ Comparaison sérum natif (pool sérum congelé) / sérum surchargé
- ✓ Envoi de 1 ml de sérum, France métropolitaine, à tester dans les 3 jours
- ✓ Mesure une vingtaine de paramètres en biochimie sur les 2 sérums
 - Histogrammes, moyenne, sd et CV par technique & groupes de pairs
 - Commentaires laboratoires
- ✓ Surcharge en activités enzymatiques d'origine humaine : ASAT/ALAT/ GGT....
- ✓ Difficultés pour tester des constituants car instables ou concentration trop faible : bicarbonates, bilirubine, CRP, glucose, ammoniaque, ac lactique, troponine

EEQ: Interprétation interférences hémolyse

Recommandations 2018 du groupe de travail pré-analytique (WG-PRE) de l'EFLM (Lippi et al) →2 seuils

Calcul la variation V due à l'hémolyse en %

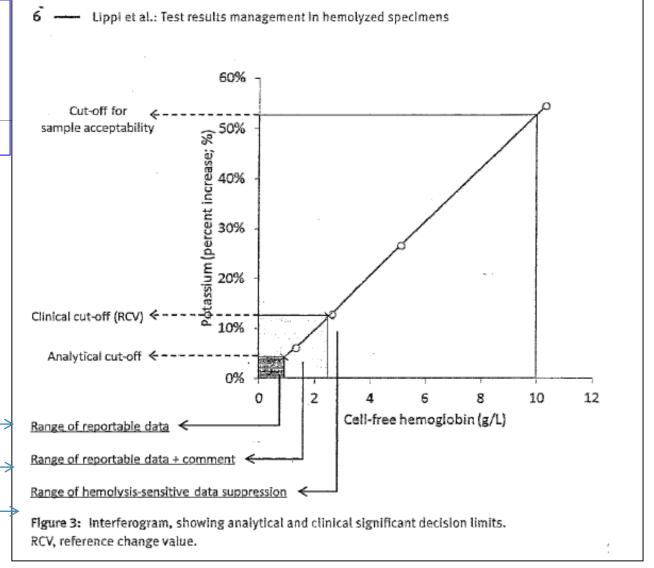
ACL Analytical change limite: Quelle variabilité analytique Cva -> CV médian des techniques sur l'échantillon non hémolysé

RCV Reference Change Value: Utilisation du Cvi (table EFLM ou Ricos)

|V|<= ACL → pas d'interférence

ACL < |V| < RCV \rightarrow Interférence sans impact clinique, résultat avec commentaire |V| >= RCV \rightarrow interférence cliniquement significative, ne pas rendre de résultats

Proposition EFLM Lippi G, Cadamuro J, von Meyer A, Simundic AM. Practical recommendations for managing hemolyzed samples in clinical chemistry testing. Clin Chem Lab Med 2018


$$RCV = \sqrt{2}x Z x \sqrt{(CVa^2 + CVi^2)}$$

$$ACL = \sqrt{2}x Z x CVa = 2,77 x CVa$$

Résultats non impactés

Résultats avec commentaires

Résultats supprimés

CVa = CV analytique - CVi = variation intra-individuelle

Synthèse des 6 enquêtes « hémolyse »

- Concentration d'Hb testée : 80 220 280 330 -370 500 mg/dl
- Systèmes testés : Architect/Alinity, AU sytem, Vitros, Cobas, Integra, Advia/Atellica, Dimension, Vista → 550 à 600 réponses
- Analyses non impactées : acide urique, albumine, calcium, ferritine, HDL-Chol., pré-albumine, Transferrine, TSH, urée.
- Analyses peu impactées : créatinine, ALAT, cholestérol, triglycérides
- Analyses systématiquement impactées (Apport) : ASAT, K, LDH
- Impact variable selon la technique : CK, Fer, GGT, Lipase, PAL, Mg, Protéines
- NB : Phosphates : interprétation difficile, taux trop élevé.

Indice HB 21BI98 = 2.4 mg/dl (non Hémolysé) Indice HB 21BI99 = 366 mg/dl Toutes techniques:

CV et histogramme identiques

21BI98 / Calcium (mmol/L)

Limites acceptables à \pm 3,8 % (Ricos minimal) Statistiques robustes (algorithme A - norme ISO 13528:2015)

Groupes techniques/pairs	Codage	Histogramme	n Cible CV E/M% Limites
ENSEMBLE DES RESULTATS	E		559 2,272 2,4 2,186-2,358 Note: TB zscore 0,1 Biais 0,4%

21BI99 / Calcium (mmol/L)

Limites acceptables à \pm 3,8 % (Ricos minimal)

Statistiques robustes (algorithme A - norme ISO 13528:2015)

Groupes techniques/pairs	Codage	Histogramme	n Cible CV E/M% Limites
ENSEMBLE DES RESULTATS	Е		543 2,277 2,4

21BI98 / Protéines (g/L)

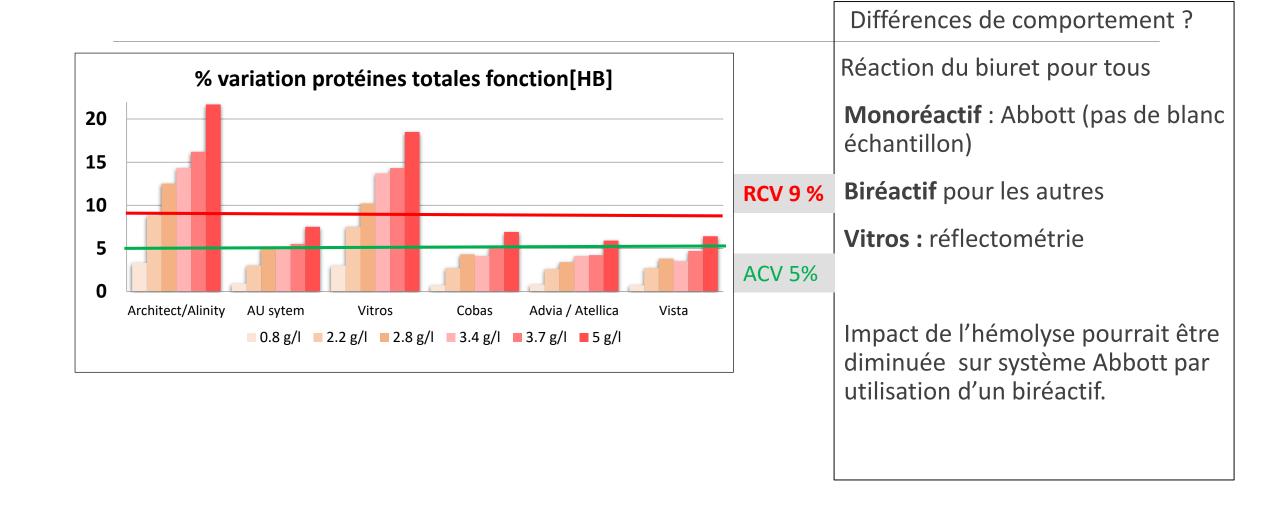
Limites acceptables $a \pm 5.2 \%$ (EFLM minimal)

Statistiques robustes (algorithme A - norme ISO 13528:2015)

Groupes techniques/pairs	Codage	Histogramme	n Cible CV E/M% Limites
ENSEMBLE DES RESULTATS	A		564 65,20 2,1 61,81 - 68,59 Note: TB zscore -0,1 Biais -0,3%

21BI99 / Protéines (g/L)

Limites acceptables à \pm 5,2 % (EFLM minimal)


Statistiques robustes (algorithme A - norme ISO 13528:2015)

Groupes techniques/pairs	Codage	Histogramme	n Cible CV E/M% Limites
ENSEMBLE DES RESULTATS	A	Y	529 70,16 5,5

Indice HB 21BI98 = 2.4 mg/dl (non Hémolysé) Indice HB 21BI99 = 366 mg/dl Toutes techniques:

CV doublé et histogramme modifié

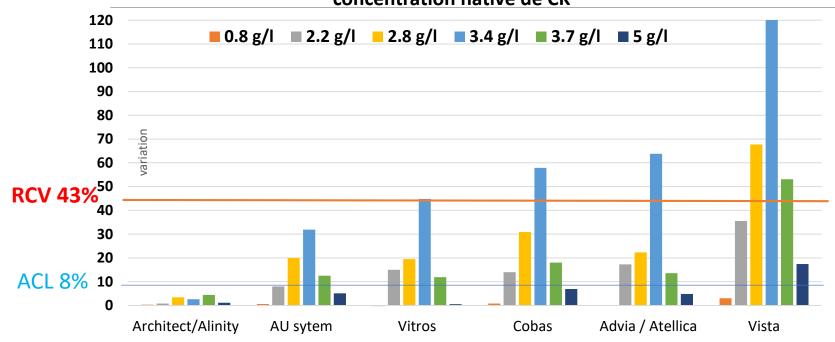
Protéines totales

21BI98 / CK (U/L 37°C)

Limites acceptables à \pm 11,0 % (EFLM optimal)

Statistiques robustes (algorithme A - norme ISO 13528:2015)

Groupes techniques/pairs	Codage	Histogramme	n	Cible	CV	E/M% Limites
ENSEMBLE DES RESULTATS	Z		530	185,2	3,1	164,8 - 205,6
21BI99 / CK	0.00	-			(EFLM optimal) rme ISO 13528:2015)	

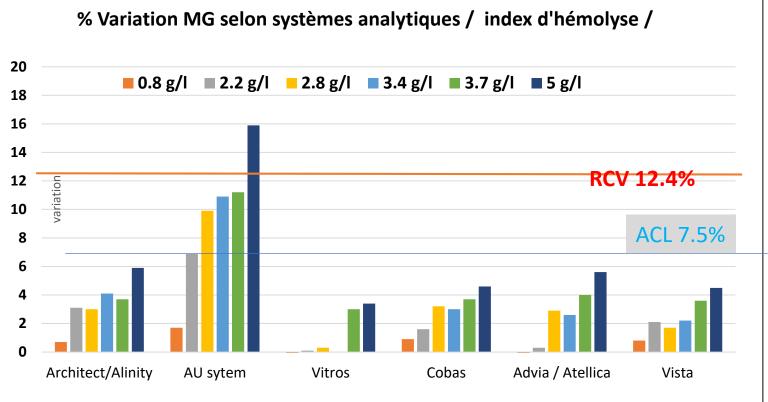

Groupes techniques/pairs	Codage	Histogramme	n Cible CV E/M% Limites
ENSEMBLE DES RESULTATS	Z		485 211,7 6,4

Indice HB 21BI98 = 2.4 mg/dl (non Hémolysé) Indice HB 21BI99 = 366 mg/dl Toutes techniques:

CV doublé et histogramme modifié

CK

% Variation CK selon systèmes analytiques / index d'hémolyse / concentration native de CK


Concentration de CK testée de 70 à 740 U/L

HB g/l	0.8 g/l	2.2 g/l	2.8 g/l	3.4 g/l	3.7 g/l	5 g/l
CK U/L	740	155	100	70	185	740

- ✓ Méthodes IFCC
- ✓ Activation NAC
- ✓ 340 nm
- → Inhibition incomplète l'action de l'adénylate kinase érythrocytaire ?

Impact hémolyse dépend de la concentration de l'analyte.
Ne pas supprimer abusivement des résultats pathologiques ?

Mg

[Mg]de 0, 80 à 0,90 mmol/l

Pas d'impact de la concentration

Interférence sur les systèmes AU Beckman

Méthode bleu de Xylidyl comme Roche Cobas ou Siemens Advia/Atellica

Longueurs d'ondes différentes ?

AU Beckman 520/800nm

Roche Cobas 505/600nm

Rapport de dilution différents ?

Étude de l'hémolyse et des pratiques

Indice d'hémolyse = 350 mg/dL

ANNEXE 3 DU RAPPORT R03-HIL-ENR-19-01 Sérum 21BI98/21BI99

Interprétation de l'indice d'hémolyse par les laboratoires : commentaires rendus pour l'échantillon 21BI99

(Nombre de réponses en fonction des techniques)

			Commenta	aire attendu	Commentaire ad	cceptable			taire non endu					
			Abbott	Beckman	Ortho Clin D		che	Ro	che		nens	Siemens	Siemens	1
		Archi	itect/Alinity	AU system	Vitros		bas		egra		Atellica	Dimension	Vista	4
ě	Technique		NA	N8	3K		IG		IG .		1E	SI	SI	
uriqu	Pas d'interférence		74 (90%)	32 (100%)	0		(99%)	10 (1	.00%)	25	. ,	4 (80%)	12 (100%)	
	Surestimation du résultat		2 (3%)			1 (0	,5%)			1	(2)			
Acide	Sous-estimation du résultat		4 (5%)					117		Dan all last	OF * .		a francisco de construito	. 11 -1- 00
Ğ.	Interférence sur le résultat		1 (1%)					Hen	nolyse:	Pas d'interférence		e significativ	e jusqu'a un indic	e H de 90
٧	Résultat non rendu		1 (1%)		10 (100%) 1 (0,5%) (concentration a					in approx	ximative	en hémoglot	oine : 56 µmol/L o	u 90 mg/dL)
	Technique	SQ	NQ	N6	3K	\$4			N4	SE	NE	NC	NC	
	Pas d'interférence	10 (100%)	73 (100%)	28 (93%)	4 (80%)	5 (6%)	12 (12%)	0 (0%)	1 (20%)	C (67%)	23 (62%)	<u></u>	0% de résulta	atc non
ΑT	Surestimation du résultat					11 (14%)	13 (13%)	3 (38%)		1 (11%)	1 (3%)	/5	0% de resulta	312 11011
ALA.	Sous-estimation du résultat												rendus	
`	Interférence sur le résultat			2 (7%)	1 (22 (27%)	23 (23%)	1 (12%)	2 (40%)					~ =\
	Résultat non rendu				1 (20%)	43 (53%)	51 (52%)	4 (50%)	2 (40%)	2 (22%)	13 (35%)		(Idem sur G	GI)
	Technique	च्य	NQ	N6	3K		N4	S4	N4	SÉ	NE	NC	NC	1
	Pas d'interférence	2 (22%)	4 (5%)			3 (3,5%)	111				2 (6%)			
ΑT	Surestimation du régultat		26 (31%)	6 (19%)		23 (28%)	14 (15%)	3 (38%)				0./070/3	4.770/1	
ASAT	Sous-estimation du ésultat	_		1 (3%)	l					>3U0∜ Y	oc rócu	ltate rond	us alors que	1
,	Interférence sur le résult		7 (9%)	6 (19%)		8 (9,5%)	15 (15%)	1 (12%)	2 (33%	/30% u			•	
	Résultat non rendu	7 (78%)	46 (55%)	19 (59%)	9 (100%)	49 (5000)	66 (69%)	4 (50%)	4 (67%		ľACL	est dépas	sé	

Pratiques hétérogènes. Respect des alertes des fournisseurs

Bilan de l'expérience EEQ PBQ

- ✓ Programme plébiscité par les utilisateurs (nombre de participants en augmentation)
- ✓ Hétérogénéité des techniques et des modalités de rendus
- ✓ Performances des techniques quantitatives >> qualitatives
- ✓ Pas de standardisation du mode de calcul des indices : résultat d'indice en échec sur les interférences mixtes → Vérification visuelle recommandée
- ✓ Comportement différent selon couple réactif /analyseur malgré des principes analytiques identiques → Les fournisseurs de réactifs pourraient améliorer les réactifs de chimie

Que faire des résultats HIL?

Types d'interférences

Quel est l'impact de l'interférence sur le résultat du patient?

Seuil d'interférence retenu

Valeur du résultat : normal/pathologique

Le seuil d'interférence = seuil à partir duquel un résultat est considéré comme erroné

Définition de l'erreur totale acceptable

Essais pour définir la correspondance en indice HIL acceptable

Plusieurs mode de calcul de l'erreur acceptable

- Analytique
 - Fournisseurs : Variation de +-10% (fournisseurs) : seuil arbitraire paramétré dans les automates.

Critère d'acceptabilité: Recouvrement ± 10 % de la valeur initiale à une activité de γ-glutamyltransférase de 40 U/L (0.67 μkat/L).

- Valtec : « Elles correspondent, pour chaque niveau de concentration défini, aux erreurs systématiques maximales tolérables. »
 → = limite d'erreur de justesse systématique x 2 x niveau B, M, E.
- Précision analytique : ACL = $\sqrt{2}x \ Z \ x \ CV_a$

Seuils imparfaits n'intégrant pas l'ensemble des erreurs

• Analytique et variation biologique : Pour qu'une modification chez un individu soit cliniquement significative elle doit être supérieure à la somme des variations liées à l'imprécision analytique et à la variation biologique.

- Total Change Limit TCL = $\sqrt{(2,77 \text{ CVa})^2 + (0,5 \text{ CVw})^2}$
- Erreur Totale acceptable = $0.25\sqrt{(CVa)^2 + (CVg)^2} + 1,65(0.5 CVw)$
- ∘ RCV = Reference Change Value . RCV = $\sqrt{2}x$ Z x $\sqrt{(CVa^2 + CVw^2)}$ → Recommandations 2018 du groupe de travail pré-analytique (WG-PRE) de l'EFLM

Z = 1,96 pour un risque de 5%

Cv_a² = variance de l'imprécision analytique --- > A définir par le laboratoire?

CVg² = variance de l'imprécision biologique inter individuelle

CV_w² = variance de l'imprécision biologique intra individuelle

Difficilement applicable avec les données propres à chaque laboratoire

Se référer à la bibliographie

Routine Chemistry							
Test or Analyte	Acceptable Performance						
Alanine aminotransferase	Target value ± 20%						
Albumin	Target value ± 10%						
Alkaline phosphatase	Target value ± 30%						
Amylase	Target value ± 30%						
Aspartate aminotransferase (AST)	Target value ± 20%						
Bilirubin, total	Target value ± 0.4 mg/dL or ± 20% (greater)						
Blood gas p02	Target value ± 3 SD						
Blood gas pCO2	Target value ± 5 mm Hg or ± 8% (greater)						
Blood gas pH	Target value ± 0.04						
Calcium, total	Target value ± 1.0 mg/dL						
Chloride	Target value ± 5%						
Cholesterol, total	Target value ± 10%						
Cholesterol, high dens.	Target value + 200/						

https://www.westgard.com/clia.htm

Federal Register February 28, 1992;57(40):7002-186.

Erreurs totales acceptables fixées

Tableau 3. Seuils décisionnels calculés (TCL) pour chaque analyte étudié.

Analyse	CVa	CVw	TCL (%)
Na	1,1	0,7	3,1
K	1,6	4,8	5,0
Chlorures	1,6	1,2	4,5
Urée	4	12,3	12,7
Créatinine	4,5	6	12,8
Glucose	2,4	4,5	7,0
Protéines	2,4	2,7	6,8
Calcium	1,6	1,9	4,5
ASAT	6	11,9	17,7
ALAT	6	18	18,9
LDH	6	8,6	17,2
CK	6	22,8	20,2
PAL	6	6,4	16,9
Lipase	6	23,1	20,2

TCL < variation fournisseur

TCL ≈ variation fournisseur

TCL > variation fournisseur

Poupon C, Lefèvre G, Ngo-Franc,ois S, Alibeu C, Barbé F, BourbonneuxV, Cartier R, Morin C, Szymanowicz A,Vuillaume I. Interférence de l'hémolyse sur les examens de biologie médicale utilisés en biochimie d'urgence : étude multicentrique nationale. *Ann Biol Clin* 2015 ; 73(6) : 705-16 doi:10.1684/abc.2015.1090

Analyte	Cva (en %)	Cvi (en %)	ACL (en %)	RCV (en %)
	ProBioQual	EFLM ou Ricos		
Acide urique	2,0	8,6	5,5	24,5
Albumine	1,8	2,5	5,0	8,5
ALAT	3,7	10,1	10,3	29,8
ASAT	3,4	9,6	9,4	28,2
Amylase	2,6	6,6	7,2	19,7
Bilirubine totale	9,0	21,8	24,9	65,4
Calcium	1,7	1,8	4,7	6,9
Cholestérol	2,2	5,3	6,1	15,9

ProBioQual; Echantillons 21BI98/21BI99 RAPPORT DEFINITIF R03-HIL-ENR-019-01

Définir l'indice d'HIL correspondant pour les analytes d'intérêt

Définir le seuil HIL : cas de l'hémolyse et de l'interférence d'apport

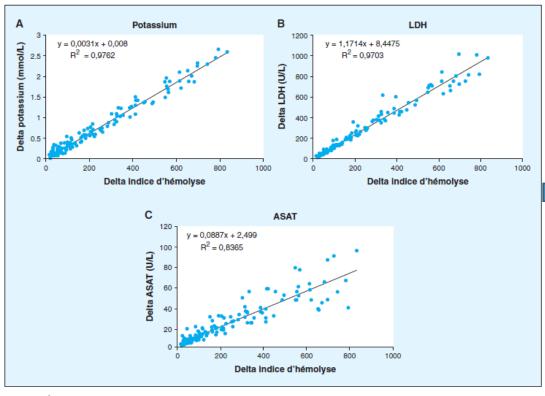
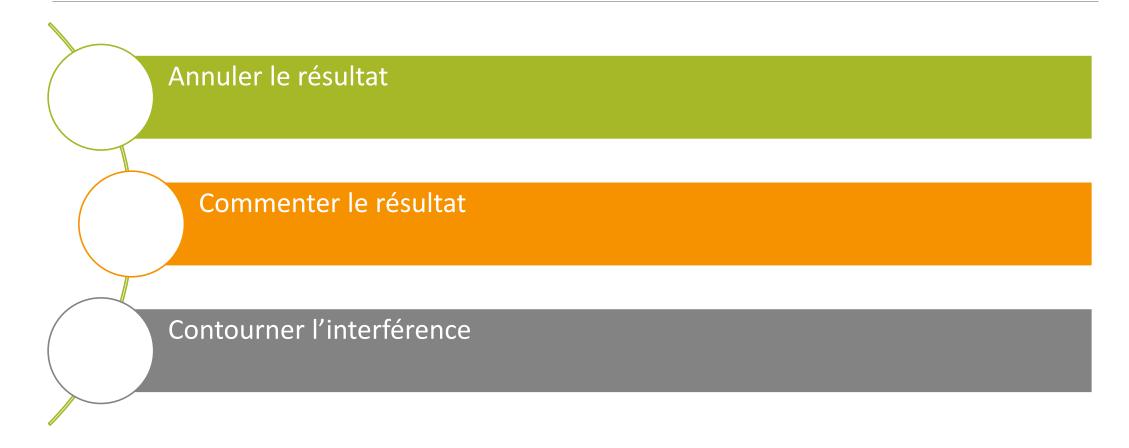


Figure 1. Évolution des concentrations plasmatiques en potassium (A), LDH (B) et ASAT (C) en fonction de l'indice d'hémolyse (delta : concentration du mesurande dans l'hémolysat dilué – concentration du mesurande dans le plasma pur).

Si Y (biais acceptable)est fixé → le laboratoire peut calculer IH

Tableau 2. Biais positifs en fonction de l'indice d'hémolyse (IH) et comparaison des IH du fournisseur et du laboratoire.


			Potassium		LDH		ASAT	
Niveau de mesurande			3,6 mmol/L	6,4 mmol/L	180 U/L	330 U/L	50 U/L	140 U/L
IHa selon la droite	ETa optimal		0	0	0	0	0	0
de régression			22 (0,99)	46 (0,94)	5 (1,00)	16 (0,99)	43 (0,96)	164 (0,90)
(sensibilité)	e) ETa minimal		Dluc la vala	ur da l'anal	1,00	31 (0,98)	87 (0,93)	291 (0,87)
Biais positif en	on de l'indice Indice 1	15	Plus la vale		0	8 %	8 %	3 %
fonction de l'indice d'hémolyse		100		aible plus l'impact d émolyse est élevé		00.0/	23 %	8 %
B% = (a x IH + b)/ cible CIQ	d'hémolyse	1 000	Петтоту	se est elevi	J 10	358 %	182 %	65 %
IHa du fournisseur			100	100	15	15	20	20
IHa du laboratoire			67	/ 121	14	31	87	164

ASAT : aspartate aminotransférase, CIQ : con le interne de or le, EEQ : évaluation externe de la qualité, ETa : erreur total ccepta e, IH : indice d'hémolyse, IHa : indice

Pour être précis il faudrait 1 seuil par analyte et par niveau Utiliser les bornes fournisseurs conduit à rejeter des résultats « acceptables »

Rousseau N, Pige R, Cohen R, Pecquet M. Quel indice d'hémolyse acceptable pour les dosages plasmatiques de potassium, LDH et ASAT? *Ann Biol Clin* 2016; 74(3): 323-8 doi:10.1684/abc.2016.1134

Les seuils HIL sont fixés \rightarrow que faire des résultats avec des alarmes HIL

Annuler / Commenter le résultat

Les enquêtes PBQ et la bibliographie montrent que les pratiques sont hétérogènes et que certains résultats faux sont rendus commentés.

Seuil HIL dépassés mais < l'ETa

- Rendre le résultat
- Commenter le résultat en indiquant le risque de sur/sousestimation

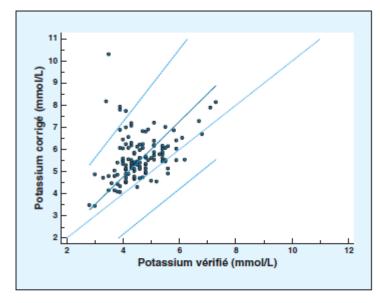
Seuil HIL dépassés mais > l'ETa

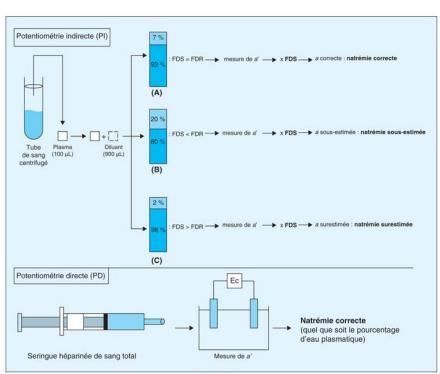
- Ne pas rendre le résultat
- Demander un nouveau prélèvement
- Essayer de contourner l'interférence

Contourner l'interférence : Cas de la lactescence

Contourner l'interférence par une formule de correction : cas de la l'hémolyse et du potassium

La correction de la kaliémie par l'indice d'hémolyse suivant l'algorithme proposé ne permet pas de retrouver la « valeur vraie » du potassium en absence d'hémolyse. Nos résultats vont dans le même sens que ceux de Mansour *et al.* [13]

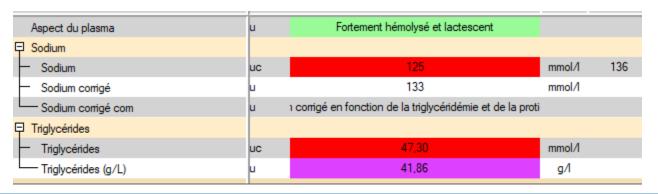



Figure 5. Relation entre potassium vérifié (considéré comme potassium vrai) et potassium corrigé en fonction de l'indice d'hémolyse.

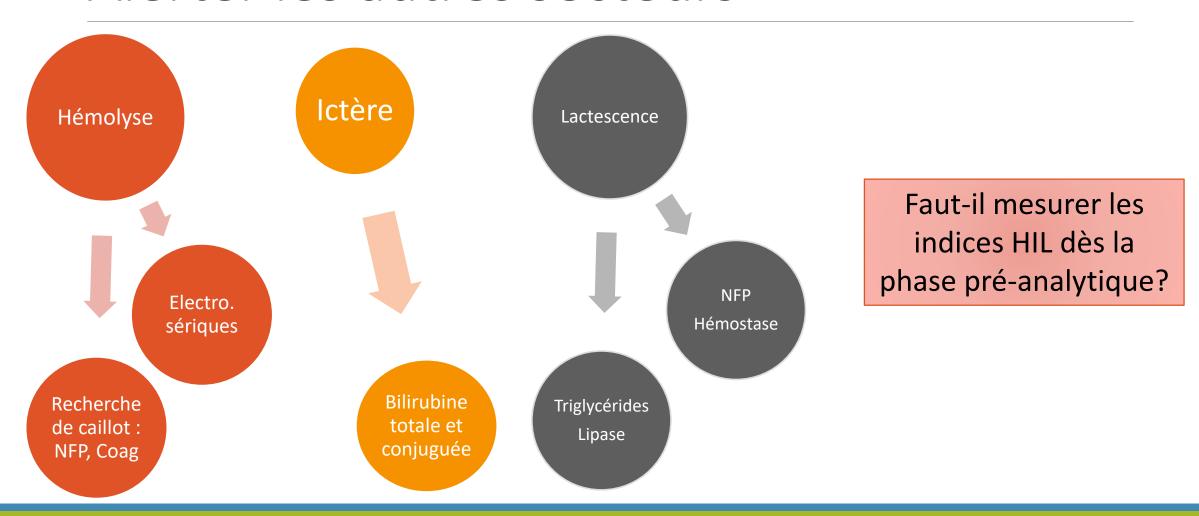
Poupon C, Lefèvre G, Ngo-Franc, ois S, Alibeu C, Barbé F, BourbonneuxV, Cartier R, Morin C, Szymanowicz A, Vuillaume I. Interférence de l'hémolyse sur les examens de biologie médicale utilisés en biochimie d'urgence : étude multicentrique nationale. *Ann Biol Clin* 2015 : 73(6) : 705-16 doi:10.1684/abc.2015.1090

Contourner l'interférence : cas du sodium et de la lactescence

Potentiométrie indirecte erronée Pseudo hyponatrémie


Figure 1

Mode opératoire de la potentiométrie indirecte (PI) et de la potentiométrie directe (PD). (A) : plasma « normal » (93 % d'eau plasmatique et 7 % de phase lipidoprotéique). (B) : plasma « anormal » avec pourcentage bas d'eau plasmatique (80 % d'eau plasmatique et 20 % de phase lipidoprotéique). (C) : plasma « anormal » avec pourcentage élevé d'eau plasmatique (98 % d'eau plasmatique et 2 % de phase lipidoprotéique). FDS : facteur de dilution standard. FDR : facteur de dilution réel de l'échantillon. E. : potentiel de la cellule électrochimique.

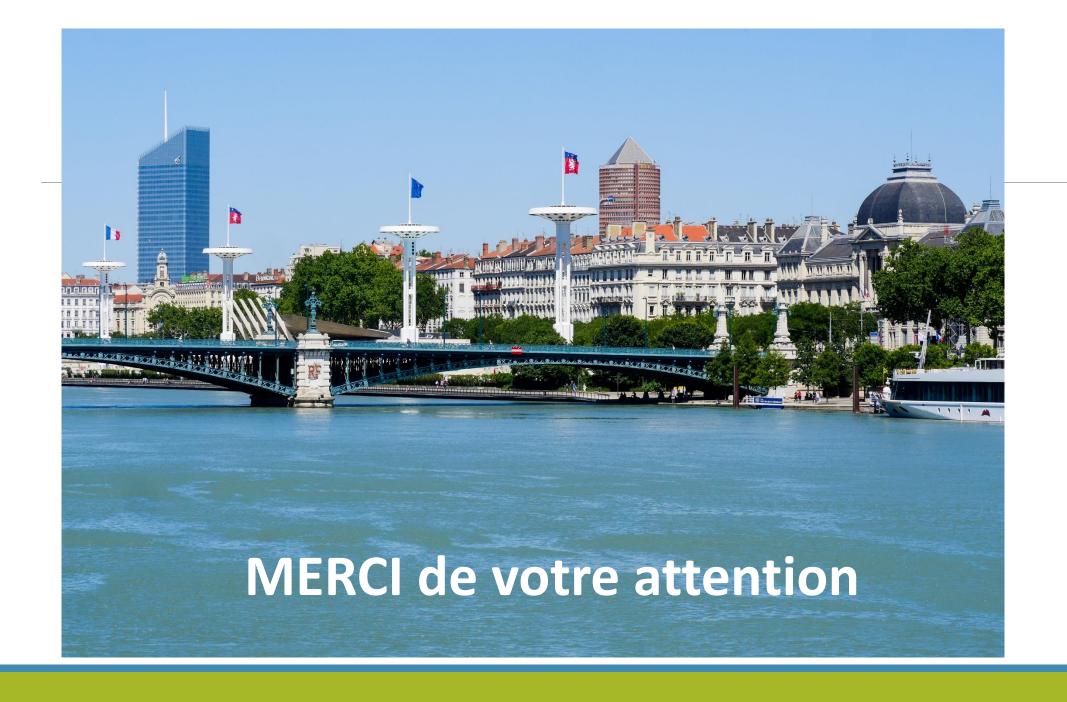

Solutions

- 1. Potentiométrie directe (gaz du sang)
- Calcul du sodium corrigé → plusieurs formules existent : https://www.sfmu.org/; Urgences Médicales » de A. Ellrodt 5eme édition, Estem 2005;

$$Na_c = Na_{mesur\acute{e}} + 0.2 \times Trigly (g/L)$$

Ajouter des tests complémentaires Alerter les autres secteurs

Conclusions et propositions


- ✓ Faire les HIL en systématique
- ✓ Ne pas se limiter aux notices fournisseurs
- ✓ Adapter les critères d'alerte HIL selon les **niveaux de concentration** : ne pas annuler un résultat pathologique abusivement.
- ✓ Utiliser les outils informatiques pour des déclenchements de test, des annulations, des réanalyses, ...
- ✓ Bloquer le dossier en validation selon la valeur des indices
- ✓ Libellé des commentaires
 - ✓ Proscrire « interférence sur le résultat » avec rendu du résultat
 - ✓ Si résultat rendu précisez la notion de sous/sur estimation
- ✓ Dans certains cas, il est possible de **contourner l'interférence** et de rendre un résultat pertinent

le rôle du biologiste

Bibliographie

- Poupon C, Lefèvre G, Ngo-Francjois S, Alibeu C, Barbé F, BourbonneuxV, Cartier R, Morin C, Szymanowicz A, Vuillaume I. Interférence de l'hémolyse sur les examens de biologie médicale utilisés en biochimie d'urgence : étude multicentrique nationale. *Ann Biol Clin* 2015 ; 73(6) : 705-16 doi:10.1684/abc.2015.1090
- Rousseau N, Pige R, Cohen R, Pecquet M. Quel indice d'hémolyse acceptable pour les dosages plasmatiques de potassium, LDH et ASAT ?
 Ann Biol Clin 2016; 74(3): 323-8 doi:10.1684/abc.2016.1134
- ProBioQual: Échantillons 21BI98/21BI99, RAPPORT DEFINITIF 22/12/2021; R03-HIL-ENR-019-01
- Uçar et al.: Interferograms plotted with RCV to manage hemolysis; J Med Biochem 41: 53 –61, 2022
- Zelmat MS. Potentiométries directe et indirecte : différences précisées à travers un cas de maladie de Waldenström. Ann Biol Clin 2015 ; 73(3) : 345-52 doi:10.1684/abc.2015.1046
- Farrell CJ, Carter AC. Serum indices: managing assay interference. Ann Clin Biochem 2016;53(5):527-538
- Local quality assurance of serum or plasma (HIL) indices Lippi G ... Simundic AM EFLM WR-PRE Clin Biochem 2018;54:112-118
- Call for more transparency in manufacturers declarations on serum indices Von Meyer A ... Simundic AM EFLM WR-PRE Clin Chim Acta 2018;484:328-332
- Gabaj NN, Miler M, Vrtaric A, Hemar M, Filipi P, Kocijancic M, Smolcic VQ, Celap I, Simundic AM. Precision, accuracy, cross reactivity and comparability of serum indices measurement on Abbott Architect c8000, Beckman Coulter AU5800 and Roche Cobas 6000 c501 clinicla chemistry analyzers. Clin Chem Lab Med 2018

